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In this work we consider the equilibrium state of a multicomponent system in w~ch chem- 
ical reactions occur, and its sensitivity to the change of any of the thermodynamic parameters 
influencing the equilibrium. A general expression is obtained for the sensitivity coefficient 
Oni/O Y, where ni is the equilibrium amount of the ith chemical species in the system, and Y is a 
thermodynamic parameter such as temperature, pressure, initial mount  of a species, chemical 
potential of a species, etc. We demonstrate that the sensitivity coefficients are linear combina- 
tions of contributions originating from certain special reactions, called response reactions, 
which are defined in the paper. 

1. I n t r o d u c t i o n  

A general problem of  chemical thermodynamics is to describe the response of  
the equilibrium state of  a mul t icomponent  system in which chemical reactions 
occur, to the change of  one (or more) parameters  that  influence the equilibrium [1 ]. 
A part icular  aspect of  this problem is the dependence of  the equilibrium composi-  
tion of  such a system on various thermodynamic parameters  [2,3]. This dependence 
if measured by the so-called sensitivity coefficients Oni/O Y, where ni is the equili- 
br ium amoun t  of  the ith chemical species in the system considered, and Y is the 
respective parameter .  In this paper  we deduce a general expression for the sensitiv- 
ity coefficients. It seems that this result was hitherto not  known in chemical thermo- 
dynamics.  

In the system considered in this work  we assume that chemical reactions occur 
between n distinct species A1, A2, . . . ,  An. The interactions between them are 
described by means o fm  chemical equations: 

UjlAI +½"2A2+ . . .+u jnAn  = 0 ,  j =  1 , 2 , . . . , m .  (1) 

i On leave from: Faculty of Science, University of Kragujevac, Kragujevac, Yugoslavia. 

© J.C. Baltzer AG, Science Publishers 



230 I. Gutman et al. / An  identity in chemical  thermodynamics  

The stoichiometric coefficients vii are chosen so that vii < 0  if Ai is a reactant, 
vii > 0 if Ai is a product, and vj~ = 0 if Ai does not participate in the j th  reaction. 
Throughout this paper it is assumed that eqs. (1) are stoichiometrically indepen- 
dent, i.e. that 

rank 1/21 1/22 . . .  /}2n = ~/'/ 

Vrnl b'm2 . . • lYrnn 

and that m >  1. Recall that the chemical reactions (1) can be chosen in many 
different, but (from the point of view of the thermodynamics of multiple chemical 
equilibria) equivalent ways. 

We further assume ideal behavior of the system. The concrete realization of 
this assumption is eq. (4), see below, which is supposed to be always satisfied. 

The sum of the of the stoichiometric coefficients of the j th  reaction (1), namely 
vii + uj2 + . . .  + v/n, will be denoted by Auj. 

By n/0 and ni we denote the initial and equilibrium amounts (= numbers of 
moles), respectively, of the ith chemical species A~. The total amount of substances 
present in the system at equilibrium is nt. If nz is the amount of the "inert" sub- 
stances, i.e., those which do not participate in any of the chemical processes (1), 
then 

n 

nt = nz + y ~  lli • 
i=1 

The extent of the j th  reaction (1) at equilibrium will be denoted by ~j, j = 1, 2, 
. . . ,  m. Then the mass-balance conditions read 

m 

rli = nio -+- ~ v j i ~ j ,  i =  1,2,.. .  , n .  ( 2 )  

j = l  

Let Y be the parameter whose influence on the equilibrium composition will be 
examined. Then the respective sensitivity coefficients are Oni/O Y,  i = 1 , 2 , . . . ,  n, 
and they satisfy the equations 

m 

O n i / O Y = 6 +  ~-~ujiOCj/OY,  i =  l , 2 , . . . , n ,  (3) 
j = l  

where 6 = 1 if Y = nio and 6 = 0 otherwise. Equations (3) are immediate conse- 
quences of(2). 

The Gibbs energy of the system considered, G, can be viewed as a function of 
the parameters ~1, ~2, . . . ,  ~m. In view of this, we may define the quantities G,, 
[1,2], 
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I 
Gr., = :G/OCr . 

If we accept that the behavior of our system is ideal, then the following identity is 
known to be obeyed [1,2]: 

Gr, = ~ v, ivsi 1 ArrAys. (4) 
~=1 ni tit  

These second derivatives of the Gibbs energy play a central role in the study of  the 
sensitivity coef~cients, because of  the relations [2] 

Gjl O~I/OY-'~-Gj20~2/OY-~... q-GjmO~m/OY= X'j" , j = l , 2 , . . . , m .  (5) 

The quanti ty Xj, which appears on the right-hand side of  (5), is associated with 
t h e j t h  chemical reaction (1), j  = 1 ,2 , . . . ,  m. Besides, Xj depends on the nature of  
the parameter  Y. In table 1 are listed some usual choices for Y and the correspond- 
ing expressions for Xj. 

Observing that  (5) is a system of m linear equations in the unknowns'O~j/OY, 
j = 1 , 2 , . . . ,  m, we immediately conclude that 

O ~ j / O Y =  .4i / .4 ,  (6) 

where .4 and .4j are determinants, given by 

G11 G12 . . .  Glm 

G21 G22 --- G2m 
4 = 

Gml Gin2 ... Gram 

and 

Table 1 
The form of the function Xj (eq. (5)) for various choices of the parameter Y, in the case of systems 
with ideal behavior. 
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Gll Gl2 . . .  Gl,j-1 X1 G I , j + I  . . .  Glm 

G21 G22 --- G2,j-I X2 G2,j+I . . .  G ~  zaj= 

Gin1 Gin2 . . .  Gmj-1 Xm Gm,j+~ . . .  Gram 

Substituting (6) back into (3) we arrive at 

1 m 
& d a Y  = ,5 + ~ ~__~ uj, zai . 

j ;  1 "~ 

Formula  (8) is the starting point for the present considerations. 

(7) 

(8) 

2. T h e  identi ty:  first f o r m u l a t i o n  

To be able to formulate an expression for the sensitivity coefficients, we intro- 

duce the following abbreviations for the four types of  determinants that occur in 

our considerations: 

D( i l , i 2 , . . . , im- l , i )  = 

/21,i1 /21, i2 • " " / 2 1 , i m - I  / / 1 , i  

/22,il V2,i2 " - • /22,i . , -1 V2 , i  

/2m,il /2m,i2 - • • /2rn,i,n-i /2m,i 

(9) 

D(il,  i2 , . - . ,  ira-l, X)  = 

/21 ,it /21 ,/2 • " " /21 , i , . -1  J / l  

/22,il /22,i2 " • " V2,i,,,_1 - '¥2 

/2m,il /2m,i2 " " • /2m,im_l X m  

(10) 

D(il,  i2, . -- ,  ira-2, A/2, i) = 

V I , i  I V l , h  . .  • Vl, / , , ,_ 2 Avl /21,i  

/22,il /22,i2 - • - /22,im_2 A / 2 2  v2 , i  

: : : : : 

/2m,it /2m,i2 . • • /2rn,irn-2 A / 2 m  /2m,i 

(11) 

D( il , i2 , . . . ,  ira-2, Au, X)  = 

/21 ,il V l  ,i2 • . - /21,ira_2 A V l  J [ 1  

u2,il v2,i2 -.- u2,im_2 Au2 X2 

/2m,il /2m,i2 • • " /2m,im-2 Aura X m  

(12) 

Then the following identity holds: 
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1 D(il, i2, • • • ire-l, i)D(il, i2,. • •, im-1, X) 
Oni lOY=6+-~  ~ 

~1 <i2 <---<irn-I  n i l n i 2  " " " n i m - I  

1 D ( i l ,  i2,  " A t / ,  i ) D ( i l , / 2 ,  i ra -2 ,  A t , , ,  J ( ) . ]  + ~ Z • • • ~ l m - 2 ~  . . . . . .  " " " 7 . 

J n t  il <i2 <...<ira-2 ni~ni2 • .  • ni,~_2 

(13) 

In order  to be able to see the chemical meaning of  the above formula we intro- 
duce an auxiliary notion, namely the response reactions. We further classify the 
response reactions into Hessian (HR) and non-Hessian (NHR).  

3. Two special types o f  stoichiometric relations: Hessian and non-Hessian 
response reactions 

Any linear combinat ion of  the chemical equations (1) results in a new "chem- 
ical react ion"  between the species A1, A2, . . . ,  A,, which is acceptable f rom a 
stoichiometric point of  view. In what follows we shall be interested in certain spe- 
cial types of  such linear combinations,  which we name "response reactions", 
because these reactions are intimately connected with the sensitivity coefficients. 
We distinguish between "Hessian response reactions" (which are connected with 
the determinant  of  the Hessian matrix of  the Gibbs energy [4]) and "non-Hessian 
response reactions" (which have no effect on the Hessian determinant) .  

A linear combinat ion of  eqs. (1) is said to be a Hessian response reaction (HR), 
or shorter: a Hessian reaction, if it involves at most  n - m + 1 of  the chemical spe- 
cies A i ,  i = 1 , 2 , . . . ,  n. The HR in which the species A l l ,  Ai2,  . . . ,  Ai,,,_l are absent 
will be denoted by 9£ = ~(il ,  i2,...,  ira-l). If  this reaction is writ ten in the form 

n 

= 0 

i=1 

then it can be shown that its stoichiometric coefficients satisfy 

ui(Oi) = D(il, i : , . . . ,  ire_~, i). (14) 

Fur thermore ,  the change of  the quanti ty X in the reaction J£(i1,i2, . . . ,  ire-l) is 
equal to 

X ( ~ )  = n(il, i2,...,  ira-l, X) .  (15) 

More  details on the HRs can be found elsewhere [4]. In particular, in [4] was 
shown that  the Hessian determinant  of  a mul t icomponent  equilibrium system is 
equal to the sum of  contributions coming from the HRs. 

A linear combinat ion of  eqs. (1) is said to be a non-Hessian response reaction 
(NHR),  or  shorter: a non-Hessian reaction, if it involves at most  n - rn + 2 of  the 
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chemical species Ai, i = 1 ,2 , . . . ,  n, and if the sum of its stoichiometric coefficients 
is equal to zero. The N H R  in which the species Ai,, Ai2, . . . ,  Ai.~_2 are absent will be 
denoted by ~f = 7q(il, i2 , . . . ,  i,,-2). If this reaction is written in the form 

n 

: 0 

i = l  

then in full analogy with (14) and (15), 

ui(3q) = D(i l ,  i 2 , . . . ,  ira-2, Au, i) 

and 

X(3q) = D(i l ,  i 2 , . . . ,  ira-2, Au, X ) .  

Notice that there may exist an overlap between the two above described sets of 
reactions: a N H R  may simultaneously be a HR and vice versa. A detailed discus- 
sion on the concept of NHRs and their role in determining the properties of 
chemical equilibria, together with a number of applications to concrete physico- 
chemical systems, will be given in a later publication [5]. 

4. The identity: second formula t ion  

Using the concept introduced in the preceding section, we can rewrite the for- 
mula (13) as 

1 /~i(~--~)X~(~J~)7r(~) + ui(3q)X(:N)~-(3q) , (16) Oni/O Y : 6 + --~ 

where 

1 1 
~(~0 = ; ~ ( ~ ) =  

n i l  l ' l i2  . . . H i m _  1 1 l i l l l i  2 . . . h i m _  2 

The first summation on the right-hand side of (16) embraces the Hessian reactions 
3( = 3(( i l , /2 , . . . ,  i,,-l) whereas the second summations goes over the non-Hessian 
reactions 3q = 3q(il, i 2 , . . . ,  ira-2). Consequently, every sensitivity coefficient can 
be viewed as being equal to the sum of contributions coming from all response reac- 
tions; the contributions coming from HRs have a different form than those asso- 
ciated with NHRs.  This observation enables a deeper insight into the perplexed 
interrelations which determine the thermodynamic behavior of multicomponent 
systems with multiple chemical equilibria. Numerous applications of (16) will be 
elaborated elsewhere [5]. 

5. P r o o f  o f  f o r m u l a  (13) 

We divide the proof of formula (13) into three steps. In the first step we show 
that the sensitivity coefficients can be written in the form 
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1(1) 
Oni/OY = ~5 +-~ AI +--A2 . 

n t  

In the second and third steps we demonstrate that 

D( il , i2 , . . . ,  ira-l, i)D( il , i2 , . . . ,  tm-1, X)  
A1 Z....¢ 

fi <i2 <.- .<i , , -~ nf i  ni2 . • .  ni=_~ 

and 

A2 = ~ D(il,i2,... ,im-2, Au, i)D(il,i2,... ,tm-2, Au, X) 
il < i2 <.. .  < ira-2 n i l  ni2 " " " him-2 

with the terms in the numerators being given via eqs. (9)-(12). 

(17) 

(18) 

(19) 

Step 1 
In the first part of the proof of formula (13) we utilize the following two proper- 

ties of determinants: 

a l l  a12  . - .  ~ l h - l - a t ( h  . . .  a i m  

a l l  a12  dlhq-a~h . . .  alm 

lall  a12 ~h+al[h . . .  a i m  

a l l  a12  . . .  d l h  . . .  a l  m 

a l l  a12 . . .  atlh . . .  a l m  

a l l  a12 . . .  ~ l h  ' ' '  a i m  

+ 

a l l  a12  . . • 41h  . . .  a i m  

a l l  a12  . . . at:h • . .  a l t o  

a l l  a12  . . .  d ( h  . . .  a i m  

(20) 

and 

a l l  a12  . . .  / ~ a l h  . . .  a l m  

a l l  a12  . .  • , ~ a l h  • . .  a i m  

a l l  a12  . . .  )~a lh  . . .  a l t o  

,~ a l l  a12 

a l l  a12  

a l l  a12  

• .  • a l h  • • • a i m  

• • • a l h  . . .  a i m  

• • • a l h  . . .  a l m  

(21) 

Introducing the abbreviation 

n 

G; = 
1,1riLIsi 

i=1 n i  

(22) 

we can rewrite eq. (4) in the form 

G .  = G,; - l a u r A . , .  
n t  

(23) 
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Then  by subst i tut ing (23) back into (7), and by bearing in mind  (20) and (21), 
(with h = 1), we obtain 

G~I GI2 . . .  GI,j-1 X1 GI,j+I . . .  Glrn 

G~I G22 ... G2d-I )(2 G2d+l . - .  G2m 
= 

Gml Gin2 . . .  Gm,j-I .'~m Gm,j+l . . .  Gram 

Avl G12 --- GI,j-1 XI GI,j+I . . .  Glm 

AVl Av2 G22 .- .  G2,j-1 X'2 G2,j+I . . .  Gzm 

n I . . . . . . . . . . . . . . . . . .  

lay,. Gin2 . . .  Gin,j-1 Xm Gmd+l . . .  Grnm 

Repea t ing  the same procedure  for the second co lumn (h = 2) we fur ther  get 

G*I1 G*12 . . .  GI,j-1 Xl GI,j+I . . .  Glm 

G~I G~2 . . .  G2,j-1 X2 G2,j+I . - .  G2m 
= 

. . .  X m  Gin , j+1  . . .  

G~2 AVl . . .  GI,j-1 )(1 GI,j+I . . .  Glm 

Av2 

nt 

G~2 Av2 . . .  G2,j- I J(2 G2,j+I . . .  G2m 

G'm2 Arm . . .  Gin,j-1 Xrn Gmd+l . . .  Gram 

AVl 

nt 

Aul G~2 . . .  GI,j-I J(1 GI,j+I . . .  Glm 

Av2 G~2 . . .  G2,j-1 )(2 G2,j+I . . .  G2m 

Arm G'm2 . . .  Gin,j-1 Xm Gm,j+l . . .  Gram 

AVl Avl . . .  Gld-I X1 G1j+I . . .  Glrn 

f A v l ) ( _ A v 2 ) . A u 2  Av2 . . .  G2,j-1 X2 G2j+I . . .  G2m 
+ ~,- 

nt / \  nt ] . . . . . . . . . . . . . . .  

Av,, . . .  Grad-1 Xm Gm,j+l . . .  Gram 

The  last de te rminan t  in the above expression is zero because two of  its co lumns  
coincide.  

Con t inu ing  the same reasoning for the remaining columns of  Aj (except, of  
course,  for t h e j t h  column),  we finally arrive at 

, _ _l E AvkAj*k ' (24) 
" ,  k = l  

(k#j) 
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where 

and 

~k~- 

G~I G'12 ... G*I,j_ 1 X1 G*I,j+ 1 

G~I G~2 ... G~,j_ 1 X2 G~,j+ 1 

G* I G~2 ... G*j_~ X,, G*j+I 

• .. G*Im 

• .. a;m 

..° 

... G*mm 

G~I G'12 ... G*I,j_I ](I G*I,j+I ... G*Lk_I Avl G'I:¢+ I ... G*im 

G~I G~2... G~,j_I J(2 G~,j+I -.. G~,k_ 1 Av2 G~,k+ I ... G~n 

Gml G~2 ... G*~,j_ 1 Xm G~,,j+I ... G*m,k_ I Arm Gin,k+ 1 ... G~ m 

Equation (8) can now be written in the form (17) provided 
m 

A1 : y ~  ½./23/* 
j = l  

and 
m m 

A2 = - Z v J i  Z AukA.~*k " 
j=l k=l  

(k#j) 

(25) 

(26) 

(27) 

(28) 

Step 2 
We now proceed to show that (18) follows from (27). In order to do this we first 

expand A~, eq. (25), with respect to i tsjth column. Then 
rn m 

A1 = ~ vii ~(--1)k+JXkA*(klj) .  (29) 
j = l  k = l  

Here 23* stands for the determinant 

Gh cT2 ... c;m 

23,= ..- 

G;I C; 2 --. C;,m 

whereas 23*(kh... ljl...) is the minor, obtained from 23* by deleting its kth, hth, 
... rows andjth, Ith,... columns. 

Taking into account the form of the matrix elements Grs , eq. (22), and using the 
properties (20) and (21), expand 23"(k I j) with respect to all its m - 1 columns. This 
results in 
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n n n 

a*<j)  = Z ,  
i1=1 / 2 = 1  i m - I  = 1  

t/1,i, 1"2,6 .. • Vj-l,ij_l Vj+ l,ij . . .  Vm,i,,_l 
n 6  n h  . . . ni,._~ 

1"11 ,il 

Z/2,il 

X 11k- l , i l  

l~k + l,il 

b'ra,il 

P l , h  - • • V l , i , . - i  

u2,6 • • • v2,i=_l 

V k - l , i 2  • • • P k - l , i r n - I  

/ J k + l  ,i2 " " " lJk + l,i,,n-I 

1.1m,i 2 • . . l]ra,irn_ I 

(30) 

The determinant on the right-hand side of (30) is just a minor of the determinant v, 

v = v ( i l , i2 , . . . , im)  = 

V l , i l  b ' l , i 2  • • • V l , i r n _ l  Vl, im 

V 2 , i l  / 22 , i  2 " " " b ' 2 , i , . -  l V2 , i ,n  

1./m,il Vrn,i2 . • • Prn,i.,_l Vra,i,,, 

obtained from v by deleting its kth row and mth column. Therefore we denote this 
minor by v(klm ) = v(il, i2,. • •, i,,,)(klm). 

If any two of the indices il,/2, . . . ,  ira-1 are mutually equal, then the respective 
columns in v(klm ) coincide, and, therefore, the corresponding summand in (30) 
becomes equal to zero. We thus have to examine only those summands on the right- 
hand side of(30), in which all the indices il, i2, . . . ,  ira-1 are mutually distinct. 

Let (h i , h2 , . . .  ,h,,,-l) be an ordered m-tuple of integers, such that 1 ~<hl <h2 
< . . .  <hm-i ~<n. Then one of the summands in (30) will be of the form 

V l ' i l  V 2 ' i 2  " " " VJ-- l ' i j - |  Z / J + l ' t )  " " " Vm'im-I  " v(hl, h 2 , . . . ,  hrn-1, hm)(klm).  (31) 
ni l  n 6 . .  • ni.~_ 

Note that hm in v(hl, h2, • . . ,  hm-1, hm) (klm) is a dummy parameter, because in v(hl, 
h2 , . . . ,  h,,_ 1, hm) (k Ira), the ruth column of v(hl, h 2 , . . . ,  hm-1, hm) does not exist. 

On the right-hand side of (30) there are additional ( m -  1 ) ! -  1 summands of 
the type (31), in which the indices i1, i2 , . . . ,  i,,-1 coincide with hi, h2 , . . . ,  hr,,-1, but in 
some other order. Then the determinant v(il, i 2 , . . . ,  ira)(klm) can be brought into 
the form v (h l , h2 , . . . , hm) (k ]m)  by a number of transpositions of columns of 
v(il, i 2 , . . . ,  in)(klm ). Each transposition of two columns of a determinant causes 
the change of its sign. Consequently, it will be 

v(il, i2, - - •, ira)(klm) = ( -  1)Pv(hl, h2, •. •, hm)(klm),  (32) 

wherep is the number of transpositions required in the mapping 

( i l ,  i 2 ,  • • • ,  i r a - l )  "-+" ( h l ,  h 2 , . . . ,  a m - l ) .  
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As known from algebra, p is just the parity of the permutation (fi, i2, •. •, ira-l) rela- 
tive to (h i ,  h2, . . . , hm-1). 

By summing the (m - 1)! terms on the right-hand side of (30) in which the 
indices il, i2,..., ira-1 (when appropriately ordered) coincide with (h i ,  h 2 , . . . ,  hm -1 ) ,  

by using (32), and by taking into account the definition of a determinant, we 
obtain 

(-I) p b'l,il b'2'i~ " " " t/j--l,ij_ll/j+l,ij.., l:m,i,,,_l 

il ,...,im-I n i l  ni2 " " " l'lim-I 

× v ( h l , h 2 , . . .  , h m - l , h m ) ( k l m )  

= v ( h l ,  h2, . . . ,  hm-1 ,  h m ) ( j l m ) v ( h l ,  h2, . . . ,  hm-1 ,  h m ) ( k l m )  

nhl nh2 • • • nhm_l 

Recall that, by definition, the determinant obeys the relation 

all a12 .-. alp 

a21 . . . . . .  a22 . . .  aEp = il,...,i~ ~ ( - 1 ) p a l ' i l a E ' i ~ ' ' ' a p ' i p "  

l apl ap2 . . .  app 

From (3 3) it immediately follows that 

v ( h l , h 2 ,  . . . , h m - l , h m ) ( j [ m ) v ( h l , h 2 ,  . . . , h m _ l , h m ) ( k [ m )  
A*(klj) 

ha <h2 <... <hm-l nh l  lelh2 " " "nhm_~ 

(33) 

i.e. 

za*(klj) = ~ v ( i l , i 2 , . . .  , i m - l , i m ) ( j l m ) v ( i l , i 2 , . . .  , i m - ~ , i m ) ( k l m )  

il <i= <... <im-I nilni2 • • • nim_~ 

Substitution of the above expression back into (29) yields after a number of perti- 
nent rearrangements, 

[j--~l (-1)m+jvjiv(j[m)] A1 = ~ 1 
il <i2 <. . .  < im- I  n i lHi2  " " " n im- l  

x - - 1 ) m + k x k v ( k [ m )  (34) 

We now have to observe that the first term in square brackets on the right-hand 
side of (34) is just the determinant D ( i l , i 2 , . . . ,  i m - l , i ) ,  eq. (9), expanded with 
respect to its ruth column. Similarly, the second term in square brackets is equal to 
D ( i l ,  i 2 , . . . ,  i ,n-1, X ) ,  eq. (10), expanded with respect to its mth column. Bearing 
these facts in mind, we see that (18) is a straightforward consequence of(34). 
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Step 3 
The expression (19) can be deduced following a pattern of reasoning analogous 

to that employed in Step 2, but somewhat more complicated. We start with formula 
(28) and expand the determinant A~,  eq. (26), with respect to both i t s j th  and kth 
columns. Next we take into account (22) and use the properties (20) and (21). Then 
the same procedure as in Step 2, leads after a lengthy calculation to the expression 
(35), whose form is similar to that of(34): 

] A z =  E nini 1 E(--1)h+t-IJ(hAutv(hllm, m - 1) 
il<i2<...<im-2 I 2"' 'gli , ,-2 h=l /=1 

(l#h) 

[ (k#jl 

Again, the two terms in square brackets on the right-hand side of (35) are respec- 
tively equal to the determinants D(il , /2, . . . ,  ira-2, Au, i) and D(il, i2,. •., ira-2, Au, 
X'), eqs. (11) and (12), when these are expanded with respect to their ruth and 
(m - 1)th columns. Formula (19) follows then immediately from (35). 

We thus showed that eqs. (17), (18) and (19) hold, and by this the proof of the 
identity (13) is completed. 

6. An example 

To exemplify the above relations we consider the partial oxidation of natural 
gas (say, CH4) for the production of synthesis gas (CO + H2) with H20 and CO2 as 
byproducts [6]. We choose the parameter Y to be the temperature T. In this case 
Xj = AI~ j /RT  2 (see table 1). The process under consideration may be described, 
for instance, by the following system if independent reactions: 

CH4 + H 2 0  = CO + 3H2, A~'I = 2, ~ 

CH4 + 2H20 = CO2 + 4H2, Au2 = 2, AH~2 / (36) 

CH4 + 202 = CO2 + 2 H 2 0 ,  Av3 = 0, 

At T = 1000 K the above standard reaction enthalpies are equal to ~ = 225.39 
kJ/mol,  A/-/~2 = 190.62 kJ/mol and AH ° = -800.82 kJ/mol. The stoichiometric 
matrix for this system reads 

CH4 H20 02 CO CO2 H2 

-1  -1  0 1 0 3 

-1  - 2  0 0 1 4 

-1  2 - 2  0 1 0 
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To derive and interpret the sensitivity coefficients we first have to construct the 
set of all response reactions. In order to obtain the Hessian reactions we have to 
eliminate m - 1 = 3 - 1 = 2 species from the initial set of reactions, eq. (36). if, for 
instance, the species to be eliminated are CH4 and H20, then the respective HR is 

- 1  -1  0 02 -1  -1  1 ] -1  - 1  01 
-1  - 2  0 C O +  -1  - 2  1 CO2 

I I -1  2 0 -1  2 1 

-1  - 2  0 + 

-1  2 - 2  

-1  - 1  3 H2 
+ - 1  - 2  4 

-1  2 0 

which is the same as 

= 0 ,  

4CO + 202 = 4CO2. 

We next calculate the enthalpy change of this HR using eq. (15): 

- 1  -1  A/-/~I 

- 1  - 2  AH ° = 4A/-/~1 - 3 A ~  2 - A/-/~3. 

- 1  2 AH~3 

Repeating this procedure for all pairs of species, we arrive at the following HRs 
(the eliminated species are indicated in brackets; the right-hand side expressions 
are the respective enthalpy changes): 

1. ( cn4 ,  H20) 
2. (CH4, 02) 
3. (CH4, CO) 
4. (CH4, CO2) 
5. (CH4, H2) 
6. (H20, 02) 
7. (H20, CO) 
8. (H20, C02) 
9. (H20, H2) 

10. (02, CO) 
11. (02, C02) 
12. (02, H2) 
13. (CO, CO2) 
14. (CO, H2) 
15. (C02, H2) 

4CO + 202 = 4CO2 
2H20 + 2CO = 2CO2 + 2H2 
202 + 4H2 = 4H20 
202 + 4H2 --- 4H20 
4CO + 202 = 4CO2 
2CH4 + 2CO2 = 4CO + 4H2 
4CH4 + 402 = 4CO2 + 8H2 
4CH4 + 202 = 4CO + 8H2 
8CO + 402 = 8CO2 
2CH4 + 4H20 = 2CO2 + 8H2 
2CH4 + 2H20 = 2CO + 6H2 
2CH4 + 6CO2 = 2H20 + 8CO 
202 + 4H2 = 4H20 
4CH4 + 802 = 4CO2 + 8H20 
4CH4 + 602 = 4CO + 8H20 

4A/-/ 1 - 2 - AH 3 

-2 1 + 
- A/-F, 

4AH 
2AH 
2AH 
4AH 
8AH 

2AHP, 
8~/~1 - 6AH~2 

4A/-/~3 

- 6AH2 ° - 2AH~3 

+ 

Observe that not all HRs are mutually distinct. In our example this is the case 
with the reactions 3, 4 and 13, as well as with 1, 5 and 9. 
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In an analogous way, eliminating only one species from (36), we readily con- 
struct the non-Hessian reactions. For example, if the species to be eliminated is 
CH4 we have the following NHR: 

-1 0 

-1 2 

+ -1 2 

-1 0 

which is the same as 

-1 2 -11 -1 2 

-1 2 -21H204- -1 2 
0 -1 0 

01 -1 
1 C 0 2  + - 1  

1 - 1  

o I 0 0 2 +  

-2  

23 I 2 4 H 2  

0 0 

-1 2 1[ 

-1 2 0 C O  

-1 0 0 

= 0 ,  

2H20 + 2CO = 2CO2 + 2H2. 

The respective enthalpy change is 

-1 2 A/-/~I 

-1 2 A/~2 = - 2 A H  °4-2A/~2. 

-1 0 A/~3 

Repeating this procedure for the remaining five species involved in (36), we ulti- 
mately arrive at the following NHRs: 

1. (CH4) 2H20 + 2CO = 2CO2 + 2H2 -2AH ° + 2AH~ 
2. (H20) 2CH4 + 402 + 4CO = 6CO2 + 4H2 -4AH~I + 4 A ~  2 + 2AH~3 
3. (02) 4H20 4- 4CO = 4CO2 4- 4H2 -4AH~I 4- 4AH~2 
4. (CO) 2CH4 4- 402 = 4H20 4- 2CO2 2AH~3 
5. (CO2) 2CH4 4- 402 4- 2H2 = 6H20 4- 2CO - 2AH 2 + 2AH~3 
6. (Ha) 2CH4 + 402 = 4H20 + 2CO2 2AH~3 

As before, not all non-Hessian reactions need to be mutually distinct; in the above 
list reactions 1 and 3 as well as 4 and 6 coincide. 

From these data one can readily derive the sensitivity coefficients. For exam- 
ple, if we are interested in the sensitivity coefficient of CH4 we have to take into 
account only those response reactions in which CH4 is involved. It is seen, that CH4 
is involved in the Hessian reactions 6, 7, 8, 10, 11, 12, 14 and 15. The contribution 
to the sentivity coefficient from each of these reactions is equal to the product of the 
stoichiometric coefficient of CH4 and the enthalpy change of the respective HR, 
divided by the product of the number of moles of those species which were elimi- 
nated. Further, CH4 is also involved in the non-Hessian reactions 2, 4, 5 and 6. The 
contribution of each of these reactions is again equal to the product of the stoichio- 
metric coefficient of CH4 and the enthalpy change of the respective NHR, divided 
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by the product of the total amount of substance and the number of moles of the spe- 
cies which was eliminated. Thus, for the sensitivity coefficient Onci-h/OT we have: 

OnCH4/OT_ 1 ~2(2AHI°--4AH °) 4(2AH~2 + 2A/~3 ) 
R T  2 A  I. nH2ono2 -~ nH2onco  

4(4AH o - AH o + A/~3) 2(2AH~2) 2(2AH~1) + + -~ 
nH2onco2 no2nco  no2nco2 

2(8A/-/~1- 6AH~2 ) 4(4A/~3) 4(4AH~I- 3AH~2 + 3AH~3) 
+ + 4 

no2/'/H2 /'/COnH2 nco2 nil2 

1 [2(-4A/-/~1 + 4A/-/~2 + 2A/~3 ) 2(2AH~3 ) + - -  +- 
/'/t HH20 nco 

+ 2(2AH1 ° - 2A/-/~2 + 2AH3 °) 

nco2 nil2 J 

7. Discuss ion 

As seen from our main results, eqs. (13) and (16), in the general case the sensitiv- 
ity coefficients depend on both the Hessian and the non-Hessian reactions. There 
are, however, a few special cases in which the NHRs need not be considered at all. 
(a) If the sum of stoichiometric coefficients in all m chemical reactions (1) is equal 

to zero, then all entries in the ( m -  1)th column of the determinant D(il, 
i2,. • •, ira-2, Au, i) are equal to zero, and consequently, D(il, i2,.. •, ira-2, Av, i) 
= 0. This implies that the second summation on the right-hand side of (13) and 
(16) vanishes, i.e., the non-Hessian reactions have no effect on Oni/O Y. 

(b) If the parameter Y is chosen to be the pressure, then Xj is proportional to Auj, 
see table 1. Then, however, the mth column of the determinant D(il , i2, . . . ,  
ira-2, A/J, X) is proportional to the ( m -  1)th column, implying D(il, i2,---, 
Ira-2, Av, X) = 0. Again, the second summation on the right-hand side of (13) 
and (16) vanishes and we conclude that the pressure influences the equilibrium 
only via the Hessian response reactions. 

(c) Because of the very same reason also the sensitivity coefficient Oni/Onz does 
not involve the non-Hessian response reactions. 

(d) It is easy to see that 
n 

D( il , i2, . . . ,  tm-2, Au, i) = D( il , i2,. . . ,  im-2, At/, A//) = 0 .  
i=1 
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As a consequence of this, the sum of the sensitivity coefficients over all reacting 
species, )--~in=l Oni/O Y, does not involve the NHRs. This conclusion holds for 
arbitrary Y. The same applies also to Ont/OY,  where nt is the total amount of 
species in the system considered. 

(e) The contributions originating from the non-Hessian reactions can be disre- 
garded also when considering chemical equilibria in diluted solutions. In this 
case, namely, nt (including the number of moles of the solvent) is much greater 
than any ni. Therefore the numerical value of the last term on the right-hand 
side of(13) and (16) becomes negligibly small. 

In our opinion, the chemically most significant finding of this work is that the 
sensitivity coefficients can be expressed as linear combinations of contributions ori- 
ginating from certain distinct classes of chemical reactions. The sensitivity coeffi- 
cients depend in a rather complicated manner on the parameters which govern the 
chemical equilibria. The analysis elaborated in this paper enables us to gain a dee- 
per insight into this dependence, and to interpret in a chemically meaningful way 
the increments whose sums the sensitivity coefficients happen to be. These incre- 
ments are associated with two well-defined types of chemical reactions, namely, 
Hessian and non-Hessian response reactions. By this the sensitivity analysis of 
complex chemical equilibria is significantly simplified and we are able to interpret 
the overall sensitivity in terms of chemical reactions which strictly obey the Le 
Chatelier principle. 
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